Resiliency shaped by activity in the gut microbiome and brain

A new UCLA Health study has found that resilient people exhibit neural activity in the brain regions associated with improved cognition and regulating of emotions, and were more mindful and better at describing their feelings. The same group also exhibited gut microbiome activity linked to a healthy gut, with reduced inflammation and gut barrier.

For the study, rather than examine microbiome activity and composition linked to disease conditions — like anxiety and depression — the researchers wanted to flip the script and study the gut microbiome and brain in healthy, resilient people who effectively cope with different types of stress, including discrimination and social isolation.

“If we can identify what a healthy resilient brain and microbiome look like, then we can develop targeted interventions to those areas to reduce stress,” said Arpana Gupta, PhD, senior author and co-director of the UCLA Goodman-Luskin Microbiome Center. This is believed to be the first study to explore the intersection of resiliency, the brain, and the gut microbiome.

Gupta and her team focused on methods to cope with stress because research has shown that untreated stress can increase the risk of heart disease, stroke, obesity, and diabetes. While stress is an inevitable part of life, studying how to handle stress can help prevent developing diseases.

To conduct the study, published in Nature Mental Health, the researchers surveyed 116 people about their resiliency — like trust in one’s instincts and positive acceptance of change — and separated them into two groups. One group ranked high on the resiliency scale and the other group ranked low. The participants also underwent MRI imaging and gave stool samples two or three days before their scans.

The researchers found that people in the high resiliency group were less anxious and depressed, less prone to judge, and had activity in regions of the brain associated with emotional regulation and better cognition compared to the group with low resiliency. “When a stressor happens, often we go to this aroused fight or flight response, and this impairs the breaks in your brain,” Gupta said. “But the highly resilient individuals in the study were found to be better at regulating their emotions, less likely to catastrophize, and keep a level head,” added Desiree Delgadillo, postdoctoral researcher and one of the first authors.

The high resiliency group also had different microbiome activity than the low resiliency group. Namely, the high resiliency group’s microbiomes excreted metabolites and exhibited gene activity associated with low inflammation and a strong and healthy gut barrier. A weak gut barrier, otherwise known as a leaky gut, is caused by inflammation and impairs the gut barrier’s ability to absorb essential nutrients needed by the body while blocking toxins from entering the gut.

The researchers were surprised to find these microbiome signatures associated with the high resiliency group.

“Resilience truly is a whole-body phenomenon that not only affects your brain but also your microbiome and what metabolites that it is producing,” Gupta said. “We have this whole community of microbes in our gut that exudes these therapeutic properties and biochemicals, so I’m looking forward to building upon this research,” Delgadillo said.

The team’s future research will study whether an intervention to increase resilience will change brain and gut microbiome activity. “We could have treatments that target both the brain and the gut that can maybe one day prevent disease,” Gupta said.

A new UCLA Health study has found that resilient people exhibit neural activity in the brain regions associated with improved cognition and regulating of emotions, and were more mindful and better at describing their feelings. The same group also exhibited gut microbiome activity linked to a healthy gut, with reduced inflammation and gut barrier.

For the study, rather than examine microbiome activity and composition linked to disease conditions — like anxiety and depression — the researchers wanted to flip the script and study the gut microbiome and brain in healthy, resilient people who effectively cope with different types of stress, including discrimination and social isolation.

“If we can identify what a healthy resilient brain and microbiome look like, then we can develop targeted interventions to those areas to reduce stress,” said Arpana Gupta, PhD, senior author and co-director of the UCLA Goodman-Luskin Microbiome Center. This is believed to be the first study to explore the intersection of resiliency, the brain, and the gut microbiome.

Gupta and her team focused on methods to cope with stress because research has shown that untreated stress can increase the risk of heart disease, stroke, obesity, and diabetes. While stress is an inevitable part of life, studying how to handle stress can help prevent developing diseases.

To conduct the study, published in Nature Mental Health, the researchers surveyed 116 people about their resiliency — like trust in one’s instincts and positive acceptance of change — and separated them into two groups. One group ranked high on the resiliency scale and the other group ranked low. The participants also underwent MRI imaging and gave stool samples two or three days before their scans.

The researchers found that people in the h

Gupta and her team focused on methods to cope with stress because research has shown that untreated stress can increase the risk of heart disease, stroke, obesity, and diabetes. While stress is an inevitable part of life, studying how to handle stress can help prevent developing diseases.

To conduct the study, published in Nature Mental Health, the researchers surveyed 116 people about their resiliency — like trust in one’s instincts and positive acceptance of change — and separated them into two groups. One group ranked high on the resiliency scale and the other group ranked low. The participants also underwent MRI imaging and gave stool samples two or three days before their scans.

The researchers found that people in the high resiliency group were less anxious and depressed, less prone to judge, and had activity in regions of the brain associated with emotional regulation and better cognition compared to the group with low resiliency. “When a stressor happens, often we go to this aroused fight or flight response, and this impairs the breaks in your brain,” Gupta said. “But the highly resilient individuals in the study were found to be better at regulating their emotions, less likely to catastrophize, and keep a level head,” added Desiree Delgadillo, postdoctoral researcher and one of the first authors.

The high resiliency group also had different microbiome activity than the low resiliency group. Namely, the high resiliency group’s microbiomes excreted metabolites and exhibited gene activity associated with low inflammation and a strong and healthy gut barrier. A weak gut barrier, otherwise known as a leaky gut, is caused by inflammation and impairs the gut barrier’s ability to absorb essential nutrients needed by the body while blocking toxins from entering the gut.

The researchers were surprised to find these microbiome signatures associated with the high resiliency group.

“Resilience truly is a whole-body phenomenon that not only affects your brain but also your microbiome and what metabolites that it is producing,” Gupta said. “We have this whole community of microbes in our gut that exudes these therapeutic properties and biochemicals, so I’m looking forward to building upon this research,” Delgadillo said.

The team’s future research will study whether an intervention to increase resilience will change brain and gut microbiome activity. “We could have treatments that target both the brain and the gut that can maybe one day prevent disease,” Gupta said.

A new UCLA Health study has found that resilient people exhibit neural activity in the brain regions associated with improved cognition and regulating of emotions, and were more mindful and better at describing their feelings. The same group also exhibited gut microbiome activity linked to a healthy gut, with reduced inflammation and gut barrier.

For the study, rather than examine microbiome activity and composition linked to disease conditions — like anxiety and depression — the researchers wanted to flip the script and study the gut microbiome and brain in healthy, resilient people who effectively cope with different types of stress, including discrimination and social isolation.

“If we can identify what a healthy resilient brain and microbiome look like, then we can develop targeted interventions to those areas to reduce stress,” said Arpana Gupta, PhD, senior author and co-director of the UCLA Goodman-Luskin Microbiome Center. This is believed to be the first study to explore the intersection of resiliency, the brain, and the gut microbiome.

Gupta and her team focused on methods to cope with stress because research has shown that untreated stress can increase the risk of heart disease, stroke, obesity, and diabetes. While stress is an inevitable part of life, studying how to handle stress can help prevent developing diseases.

To conduct the study, published in Nature Mental Health, the researchers surveyed 116 people about their resiliency — like trust in one’s instincts and positive acceptance of change — and separated them into two groups. One group ranked high on the resiliency scale and the other group ranked low. The participants also underwent MRI imaging and gave stool samples two or three days before their scans.

The researchers found that people in the high resiliency group were less anxious and depressed, less prone to judge, and had activity in regions of the brain associated with emotional regulation and better cognition compared to the group with low resiliency. “When a stressor happens, often we go to this aroused fight or flight response, and this impairs the breaks in your brain,” Gupta said. “But the highly resilient individuals in the study were found to be better at regulating their emotions, less likely to catastrophize, and keep a level head,” added Desiree Delgadillo, postdoctoral researcher and one of the first authors.

The high resiliency group also had different microbiome activity than the low resiliency group. Namely, the high resiliency group’s microbiomes excreted metabolites and exhibited gene activity associated with low inflammation and a strong and healthy gut barrier. A weak gut barrier, otherwise known as a leaky gut, is caused by inflammation and impairs the gut barrier’s ability to absorb essential nutrients needed by the body while blocking toxins from entering the gut.

The researchers were surprised to find these microbiome signatures associated with the high resiliency group.

“Resilience truly is a whole-body phenomenon that not only affects your brain but also your microbiome and what metabolites that it is producing,” Gupta said. “We have this whole community of microbes in our gut that exudes these therapeutic properties and biochemicals, so I’m looking forward to building upon this research,” Delgadillo said.

The team’s future research will study whether an intervention to increase resilience will change brain and gut microbiome activity. “We could have treatments that target both the brain and the gut that can maybe one day prevent disease,” Gupta said.

Hidden DNA mechanisms of rare genetic diseases uncovered

Researchers at the Pacific Northwest Research Institute (PNRI) and collaborating institutions have made a groundbreaking discovery that could significantly advance our understanding of genomic disorders. Their latest study, funded by the National Institutes of Health and published in the journal Cell Genomics, reveals how specific DNA rearrangements called inverted triplications contribute to the development of various genetic diseases.

Understanding the Study

Genomic disorders occur when there are changes or mutations in DNA that disrupt normal biological functions. These can lead to a range of health issues, including developmental delays and neurological problems. One type of complex DNA mutation involves a structure known as a duplication-triplication/inversion-duplication (DUP-TRP/INV-DUP). This study delves into how these complex rearrangements form and their impact on human health.

Key Findings

The research team, led by PNRI Assistant Investigator Cláudia Carvalho, Ph.D., collaborated with her lab colleagues, study lead author Christopher Grochowski, Ph.D., from the James R. Lupski Lab at Baylor College of Medicine, and other scientists to analyze the DNA of 24 individuals with inverted triplications.

They discovered that these rearrangements are caused by segments of DNA switching templates during the repair process. Normally, DNA repair mechanisms use the undamaged complementary strand as a template to accurately repair the damaged DNA. However, sometimes during repair, the repair machinery may inadvertently switch to a different but similar sequence elsewhere in the genome.

These switches occur within pairs of inverted repeats — sections of DNA that are mirror images of each other. Inverted repeats can confuse the repair machinery, leading to the use of the wrong template, which can disrupt normal gene function and contribute to genetic disorders.

  1. Structural Diversity: The study found that these inverted triplications generate a surprising variety of structural variations in the genome, which can lead to different health outcomes.
  2. Gene Dosage Impact: These rearrangements can alter the number of copies of certain genes, known as gene dosage. The correct number of gene copies is crucial for normal human development and function. Changes in gene dosage can cause diseases like MECP2 duplication syndrome, a rare neurodevelopmental disorder.
  3. Mapping Breakpoints: By using advanced DNA sequencing techniques, the researchers identified the precise locations where these DNA segments switch templates leading to an altered number of genes including MECP2.

Dr. Carvalho and Baylor scientists first observed this pathogenic genomic structure in 2011 while studying MECP2duplication syndrome. Only recently, with the advent of long-read sequencing technology, has it become possible to investigate in detail how it forms in the genome.

Implications for Rare Disease Research and Treatment

“This study sheds light on the intricate mechanisms driving genetic rearrangements and their profound impact on rare diseases,” said Dr. Cláudia Carvalho, PNRI’s lead scientist on the study. “By unraveling these complex DNA structures, we open new avenues for understanding the genetic causes of rare diseases and developing targeted treatments to improve patient outcomes.”

These findings are being applied in a follow-up study led by Baylor’s Davut Pehlivan, M.D., investigating how complex genomic structures influence the clinical features of MECP2 duplication syndrome and their impact on targeted therapeutic approaches.

Cooling ‘blood oranges’ could make them even healthier — a bonus for consumers

An orange teeming with antioxidants and other health benefits may be a shot in the arm for consumers and citrus growers, if the fruit is stored at cool temperatures, a new University of Florida study shows.

But it’s too soon to know if the so-called “blood oranges” are a viable crop for the Florida citrus industry, says Ali Sarkhosh, a UF/IFAS associate professor of horticultural sciences. Sarkhosh’s post-doctoral associate Fariborz Habibi explains further.

“Although blood oranges typically command higher prices than other common varieties, such as navel or Valencia oranges, it is unclear if farmers could substantially increase their per-acre income by adding them to their crop selection and then storing them for internal color development,” said Habibi, lead author of the study. “Improved fruit quality from the storage method presents a promising opportunity for the Florida citrus industry. However, further study is needed before recommending anything to growers.”

The fruit is rich in anthocyanins, which have been linked to various health benefits, including anti-inflammatory and antioxidant properties. They also contain other beneficial phytochemicals such as vitamin C, flavonoids and dietary fiber.

“Fruit can also develop internal color under similar conditions at home. However, the fruit in the supermarket should have a good internal color and be ready for consumption,” Sarkhosh said.

For this research, scientists harvested fruit from a research plot at the UF/IFAS North Florida Research and Education Center in Quincy.

Scientists found that storing the blood oranges at 40 to 53 degrees enhances anthocyanin, phenolic content, and antioxidants. When they lowered the temperatures 43 to 46 degrees, they also preserved fruit firmness, weight loss and sugar content.

“Attributes such as firmness are crucial for maintaining the overall quality, texture and taste of the blood oranges during storage,” said Habibi.

Blood oranges get their name from their deep red flesh. Their skin contains a type of antioxidant pigment. The fruit is commonly grown in countries like Italy and Spain, which have the Mediterranean climate – cold, but above 32 degrees — that helps them grow. In the United States, blood oranges grow primarily in California, but are not grown commercially yet in Florida.

Anthocyanin develops when the fruit is exposed to cold temperatures between 46 and 59 degrees for at least 20 days. Such conditions are rare in Florida’s subtropical climate.

Scientists devise algorithm to engineer improved enzymes

Scientists have prototyped a new method for “rationally engineering” enzymes to deliver improved performance. They have devised an algorithm, which takes into account an enzyme’s evolutionary history, to flag where mutations could be introduced with a high likelihood of delivering functional improvements.

Their work — published today in leading journal Nature Communications — could have significant, wide-ranging impacts across a suite of industries, from food production to human health.

Enzymes are central to life and key to developing innovative drugs and tools to address society’s challenges. They have evolved over billions of years through changes in the amino acid sequence that underpins their 3D structure. Like beads on a string, each enzyme is composed of a sequence of several hundred amino acids that encodes its 3D shape.

With one of 20 amino acid ‘beads’ possible at each position, there is enormous sequence diversity possible in nature. Upon formation of their 3D shape, enzymes carry out a specific function such as digesting our dietary proteins, converting chemical energy into force in our muscles, and destroying bacteria or viruses that invade cells. If you change the sequence, you can disrupt the 3D shape, and that typically changes the functionality of the enzyme, sometimes rendering it completely ineffective.

Finding ways to improve the activity of enzymes would be hugely beneficial to many industrial applications and, using modern tools in molecular biology, it is simple and cost-efficient to engineer changes in the amino acid sequences to facilitate improvements in their performance. However, randomly introducing as little as three or four changes to the sequence can lead to a dramatic loss of their activity.

Here, the scientists report a promising new strategy to rationally engineer an enzyme called “beta-lactamase.” Instead of introducing random mutations in a scattergun approach, researchers at the Broad Institute and Harvard Medical School developed an algorithm that takes into account the evolutionary history of the enzyme.

“At the heart of this new algorithm is a scoring function that exploits thousands of sequences of beta-lactamase from many diverse organisms. Instead of a few random changes, up to 84 mutations over a sequence of 280 were generated to enhance functional performance,” said Dr Amir Khan, Associate Professor in Trinity College Dublin’s School of Biochemistry and Immunology, one of the co-authors of the research.

“And strikingly, the newly designed enzymes had both improved activity and stability at higher temperatures.”

Eve Napier, a second-year PhD student at Trinity College Dublin, determined the 3D experimental structure of a newly designed beta-lactamase, using a method called X-ray crystallography.

Her 3D map revealed that despite changes to 30% of the amino acids, the enzyme had an identical structure to the wild-type beta-lactamase. It also revealed how coordinated changes in amino acids, introduced simultaneously, can efficiently stabilise the 3D structure — in contrast to individual changes that typically impair the enzyme structure.

Eve Napier said: “Overall, these studies reveal that proteins can be engineered for improved activity by dramatic ‘jumps’ into new sequence space.

“The work has wide ranging applications in industry, in processes that require enzymes for food production, plastic-degrading enzymes, and those relevant to human health and disease, so we are quite excited for the future possibilities.”

Walking brings huge benefits for low back pain

Adults with a history of low back pain went nearly twice as long without a recurrence of their back pain if they walked regularly, a world-first study has found.

About 800 million people worldwide have low back pain, and it is a leading cause of disability and reduced quality of life.

Repeated episodes of low back pain are also very common, with seven in 10 people who recover from an episode going on to have a recurrence within a year.

Current best practice for back pain management and prevention suggests the combination of exercise and education. However, some forms of exercise are not accessible or affordable to many people due to their high cost, complexity, and need for supervision.

A clinical trial by Macquarie University’s Spinal Pain Research Group has looked at whether walking could be an effective, cost-effective and accessible intervention.

The trial followed 701 adults who had recently recovered from an episode of low back pain, randomly allocating participants to either an individualised walking program and six physiotherapist-guided education sessions over six months, or to a control group.

Researchers followed the participants for between one and three years, depending on when they joined, and the results have now been published in the latest edition of The Lancet.

The paper’s senior author, Macquarie University Professor of Physiotherapy, Mark Hancock, says the findings could have a profound impact on how low back pain is managed.

“The intervention group had fewer occurrences of activity limiting pain compared to the control group, and a longer average period before they had a recurrence, with a median of 208 days compared to 112 days,” Professor Hancock says.

“Walking is a low-cost, widely accessible and simple exercise that almost anyone can engage in, regardless of geographic location, age or socio-economic status.

“We don’t know exactly why walking is so good for preventing back pain, but it is likely to include the combination of the gentle oscillatory movements, loading and strengthening the spinal structures and muscles, relaxation and stress relief, and release of ‘feel-good’ endorphins.

“And of course, we also know that walking comes with many other health benefits, including cardiovascular health, bone density, healthy weight, and improved mental health.”

Lead author Dr Natasha Pocovi says in addition to providing participants with longer pain-free periods, the program was very cost-effective.

“It not only improved people’s quality of life, but it reduced their need both to seek healthcare support and the amount of time taken off work by approximately half,” she says.

“The exercise-based interventions to prevent back pain that have been explored previously are typically group-based and need close clinical supervision and expensive equipment, so they are much less accessible to the majority of patients.

“Our study has shown that this effective and accessible means of exercise has the potential to be successfully implemented at a much larger scale than other forms of exercise.”

To build on these findings, the team now hopes to explore how they can integrate the preventive approach into the routine care of patients who experience recurrent low back pain.

Rigorous new study debunks misconceptions about anemia, education

In low- and middle-income countries, anemia reduction efforts are often touted as a way to improve educational outcomes and reduce poverty. A new study, co-authored by a global health economics expert from the University of Notre Dame, evaluates the relationship between anemia and school attendance in India, debunking earlier research that could have misguided policy interventions.

Santosh Kumar, associate professor of development and global health economics at Notre Dame’s Keough School of Global Affairs, is co-author of the study, published in Communications Medicine. Kumar’s research explores the intersection of global health and poverty reduction. His latest work evaluates the relationship between anemia and school attendance in India.

The study investigated whether there was a link between anemia and school attendance in more than 250,000 adolescents ages 15 to 18. Earlier observational studies have shown a link between anemia and attendance, even after accounting for variables such as gender and household wealth, according to Kumar. But the new study, which applied more rigorous econometric statistical analysis, did not find such a link, he said.

“Most previous research on this topic has used conventional study designs or focused on small geographical areas, which limits its policy relevance,” Kumar said. “Earlier estimates may have been distorted by unobserved household factors related to both anemia and school attendance. So in this study, we focused on the relationship between anemia and attendance among adolescents who were living in the same household.

“Ultimately,” Kumar said, “we found that the link between anemia and schooling is more muted than previously suggested by studies that did not consider household-level factors.”

The findings have important implications for policymakers seeking to improve education in low- and middle-income countries like India, Kumar said. India has widespread school attendance issues and struggles with health conditions such as anemia caused by iron deficiency, particularly in children and adolescents. The country has pushed to improve educational outcomes, in keeping with the United Nations’ Sustainable Development Goals, Kumar said. But to achieve that, he said, more research is needed to pinpoint an evidence-based intervention.

This study is part of an ongoing project to do that work and was co-authored with Jan-Walter De Neve of the University of Heidelberg, Omar Karlsson of Lund University in Sweden, Rajesh Kumar Rai of Harvard University and Sebastian Vollmer of the University of Göttingen. The project received funding from the Alexander von Humboldt Foundation, the Swedish Research Council and the West Bengal State Department of Health and Family Welfare in India.

The latest study builds on an earlier one in which Kumar and fellow researchers helped evaluate the results of an iron fortification school lunch program for students ages 7 and 8 in India. That study showed that fortification reduced anemia but did not affect students’ performance in school. A forthcoming study, set to launch in summer 2024, will look at iron fortification for children ages 3 to 5. The research hypothesis is that an early-age nutritional intervention among preschoolers would make a significant impact on physical and cognitive development.

“Our findings have implications for policymakers who want to improve educational outcomes and reduce poverty,” Kumar said. “Effective policies are based on evidence. We need more rigorous statistical analysis to examine the causal relationship between anemia and education.

“This work ties into my larger research agenda, which explores the intersection of global health and poverty reduction. I want to use my academic research to support human dignity by helping to identify evidence-based health policies that will make a tangible difference in people’s lives.”

At least one in four US residential yards exceed new EPA lead soil level guideline

Roughly one in four U.S. households have soil exceeding the new U.S. Environmental Protection Agency’s lead screening levels of 200 parts per million (ppm), halved from the previous level of 400 ppm, a new study found. For households with exposure from multiple sources, the EPA lowered the guidance to 100 ppm; nearly 40% of households exceed that level, the study also found.

“I was shocked at how many households were above the new 200 ppm guideline,” said Gabriel Filippelli, a biochemist at Indiana University who led the new study. “I assumed it was going to be a more modest number. And results for the 100 ppm guideline are even worse.”

Remediating the roughly 29 million affected households using traditional “dig and dump” soil removal methods could cost upward of $1 trillion, the study calculated. The study was published in GeoHealth, an open-access AGU journal that publishes research investigating the intersection of human and planetary health for a sustainable future. Filippelli is the former editor-in-chief of GeoHealth.

National lead problem “nowhere near over”

Lead is a heavy metal that can accumulate in the human body, with toxic effects. In children, exposure to lead is associated with lower educational outcomes. In the United States, the burden of lead exposure has historically fallen on lower-income communities and communities of color because of redlining and other discriminatory practices. Lead pollution can come from aging water pipes, old paint, and remnant gasoline and industrial pollution, but today, most lead exposure are from contaminated soils and dust, even after lead-containing infrastructure was removed.

The Centers for Disease Control and Prevention first set a limit on the concentration of lead in blood in 1991 at 10 micrograms per deciliter, and it lowered that limit several times until reaching the current limit of 3.5 micrograms per deciliter. But the EPA’s soil lead screening level remained unchanged for more than 30 years until the January announcement. Some states had established their own lower guidelines; California has the lowest screening level, at 80 ppm.

The lag is likely due to “the immensity and ubiquity of the problem,” the study authors wrote. “The scale is astounding, and the nation’s lead and remediation efforts just became substantially more complicated.” That’s because once the EPA lowers a screening limit, they need to tell people what to do if their soils exceed it.

When the EPA lowered the screening level, Filippelli and his co-authors decided to make use of the database of 15,595 residential soil samples from the contiguous United States that they’d collected over the years to find out how many exceeded the new guideline.

Household health hazard

About 25% of the residential soil samples, collected from yards, gardens, alleys, and other residential spots, exceeded the new 200 ppm level, the study found. (Only 12% of samples had exceeded the older, 400 ppm level.) Extrapolating across the country, that equates to roughly 29 million households.

The EPA issued separate guidance for households with multiple sources of exposure, such as both lead-contaminated soil and lead pipes, setting the level in those situations at 100 ppm. In practice, that’s most urban households, Filippelli said. Forty percent of households exceed that limit, increasing the number of affected households to nearly 50 million, the study found.

Typically, contaminated soils are remediated with removal — colloquially, “dig and dump.” But the practice is costly and typically only used after an area is placed on the National Priority List for remediation, a process that can take years. To remediate all contaminated households with “dig and dump” would cost between $290 billion and $1.2 trillion, the authors calculated.

A cheaper option is “capping”: burying the contaminated soil with about a foot of soil or mulch. A geotechnical fabric barrier can also be installed. Most lead contamination is in the top 10 to 12 inches of soil, Filippelli said, so this simple method either covers up the problem or dilutes it to an acceptable level.

“Urban gardeners have been doing this forever anyway, with raised beds, because they’re intuitively concerned about the history of land use at their house,” Filippelli said.

And capping is quicker.

“A huge advantage of capping is speed. It immediately reduces exposure,” Filippelli said. “You’re not waiting two years on a list to have your yard remediated while your child is getting poisoned. It’s done in a weekend.

Capping still requires time and effort; residents must find clean soil, transport it to their home and spread it out. But the health benefits likely outweigh those costs, Filippelli said.

Because capping has been done more informally, there’s still a lot to be learned about its lifespan and sustainability, Filippelli said. That’s where the research will go next.

Despite the “staggering” scale of the problem, “I’m really optimistic,” Filippelli said. “Lead is the most easily solvable problem that we have. We know where it is, and we know how to avoid it. It’s just a matter of taking action.”

Maps: https://www.mapmyenvironment.com/

Cancer survivors are at increased risk of disease throughout life

Swedish researchers have surveyed all people under the age of 25 who have had cancer since 1958. The study, led by researchers at Linköping University and Region Östergötland, shows that cancer survivors are at greater risk for cardiovascular diseases, other cancers and other diagnoses later in life. In addition, the researchers saw that socioeconomic factors played a role in survival.

Since 1958, Sweden has registered all cancer patients in the National Cancer Register. Swedish researchers have now used this register to study all cancer survivors who had cancer as a child, adolescent or adult to examine outcomes in later life. The results have been published in the scientific journal The Lancet Regional Health — Europe.

“If you’ve had cancer as a child or adolescent, you have an increased risk of almost all diagnoses in the future. This study lays the foundation for understanding why this is so and what decision-makers need to take into account when it comes to cancer care,” says Laila Hübbert, researcher at Linköping University and consultant at the Cardiology Clinic at Vrinnevi Hospital in Norrköping.

The study’s data spans 63 years. From this data, approximately 65,000 cancer patients under the age of 25 were compared with a control group of 313,000 individuals (a ratio of 1:5), where age, sex and housing situation were matched with the patient group. From other registers, the researchers retrieved information on morbidity, mortality and demography.

The researchers found that the cancer survivors were about three times more likely to develop cancer later in life, 1.23 times more likely to have cardiovascular disease and had a 1.41 times higher risk of accidents, poisoning and suicide.

At present, the healthcare system usually follows up cancer survivors five years after the end of treatment. In other words, you are usually considered healthy if the cancer has not returned after five years, and no further follow-up is planned. But the current study, and also previous ones, show that this is probably not enough.

“Cancer survivors carry with them a fragility for the rest of their lives that puts them at higher risk of new diseases. It’s mainly the chemotherapy and radiation treatment that increases the risk of cardiovascular disease. This means that patients shouldn’t be released prematurely without planned and ongoing follow-up. It’s important to identify these risk factors and diseases early,” says Laila Hübbert.

The researchers have also seen that socioeconomic factors play a major role in the risk of disease and death after cancer in young years. Thanks to a cross-check of registers, the researchers were able to see that the risk increases for those with a lower level of education, a foreign background, or who remain unmarried. At the same time, this study shows that the risk of disease and death after cancer in children and adolescents is the same regardless of where you live in Sweden.

Martin Singull is a professor of mathematical statistics and has worked closely with the clinics in order to analyse and combine the large amounts of data that come from many different sources.

“We have used proven statistical models. But it’s the complexity of the data that makes it challenging. It comes from different sources, and we also want to be able to pick out the information we want. That’s why we’ve also collaborated with computer scientist Robin Keskisärkkä, who has built the database,” says Martin Singull.

The next step for the researchers is to break down the results and probe into specific questions and understand why things look the way they do. This will include looking more at socioeconomic factors, cardiovascular disease linked to cancer, so-called cardio-oncology, and other forms of cancer.

“There aren’t really many countries that can carry out such a comprehensive survey. In Sweden, we have such fine comprehensive and high-quality national registers so it’s unique to be able to do this,” says Laila Hübbert.

Bedtime battles: 1 in 4 parents say their child can’t go to sleep because they’re worried or anxious

Many bedtime battles stem from children’s after dark worries, suggests a new national poll.

And while most families have bedtime rituals to help their little ones ease into nighttime, many rely on strategies that may increase sleep challenges long term, according to the University of Michigan Health C.S. Mott Children’s Hospital National Poll on Children’s Health.

Overall, one in four parents describe getting their young child to bed as difficult — and these parents are less likely to have a bedtime routine, more likely to leave on a video or TV show, and more likely to stay with their child until they’re asleep.

“Our report reinforces the common struggle of getting young children to sleep. When this transition to bedtime becomes a nightly conflict, some parents may fall into habits that work in the moment but could set them up for more sleep issues down the road,” said Mott Poll co-director Sarah Clark, M.P.H.

“Establishing a consistent bedtime routine is crucial. When children don’t get enough rest, it can impact their physical development, emotional regulation and behavior.”

Nearly one in five parents say they have given their kids melatonin to help with sleep while a third stay in the room until their child completely dozes off, according to the nationally representative poll that includes responses from 781 parents of children ages one to six surveyed in February.

Nighttime worries interfere with sleep

Parents share common reasons behind bedtime struggles, with nearly a quarter saying their child’s sleep is often or occasionally delayed due to being worried or anxious.

A particular challenge, parents say, is when children don’t stay asleep. More than a third of parents say their child wakes up upset or crying, with more than 40% saying their child moves to their parents’ bed and about 30% saying children insist that the parent sleep in their room.

“Many young children go through stages when they become scared of the dark or worry that something bad might happen, causing them to delay bedtime or become distressed by parents leaving the room. Bad dreams or being awakened in the middle of the night can also disrupt sleep,” Clark said.

“Although this is a normal part of a child’s development, it can be frustrating when parents already feel tired themselves at the end of the day. Parents should find a balance between offering reassurance and comfort while maintaining some boundaries that help ensure everyone — both kids and adults — get adequate sleep.”

More findings from the report, plus Clark’s recommendations for helping young children fall and stay asleep:

Stick to a regular bedtime routine

Most parents polled report having a bedtime routine for their child, often including brushing teeth, reading bedtime stories and/or bathing. Less than half also say their child has a drink of water or snack, turns off devices, prays and talks about their day.

Other bedtime habits include holding a blanket or stuff animal or sucking a pacifier or fingers.

Not only does having a consistent bedtime routine help make the nighttime transition smoother, Clark says, it also provides one-on-one time, allowing the child to get their parent’s full attention.

“A predictable bedtime routine provides a sense of security and comfort and signals to the child that it’s time to slow down,” she said.

“Knowing what to expect next can reduce anxiety and help children feel safe and relaxed. Having this dedicated time with parents also promotes bonding and emotional connection, creating positive associations with bedtime.”

Nearly two-thirds of parents also said children staying up to play was a major factor in delaying sleep. Clark says, highlighting the need to wind down at least an hour before bed.

Promote an environment conducive to sleep

A little less than half of parents polled say their child sleeps in their own bedroom while less than a quarter share a bedroom with siblings or in the parents’ bedroom. One in 10 kids spend part the night in their own bedroom and part of the night with parents.

More than two-fifths of parents polled said noise from other rooms interfered with their child’s sleep.

“The sleep environment can have a major effect on a child’s sleep quality, including getting to sleep and staying asleep through the night,” Clark said.

“When possible, children should have their own bed in a room that is quiet, without a lot of noise from other family members.”

Many parents polled also use a nightlight or crack the bedroom door so the child isn’t in complete darkness, Clark says, but parents should make sure the light does not shine directly at the child’s face.

Some parents also play calming music or stories to help their child go to sleep, while others use a white noise machine or app. However, Clark cautions to keep white noise machines at no more than 50 decibels and placed at least seven feet from the child’s bed to prevent unintended damage to the child’s hearing.

Talk to a doctor before using aids like melatonin

Many types of melatonin products are advertised as being appropriate for children but these products have not undergone rigorous testing for safety and effectiveness, and their side effects and long term impact on a child’s growth and development are unknown, Clark says.

“Although melatonin is a natural hormone that regulates sleep-wake cycles and may be fine to use occasionally, parents shouldn’t rely on it as a primary sleep aid,” Clark said.

“Parents who are considering giving melatonin to their young child should consult with their pediatrician to discuss options and rule out other causes of sleep problems first.”

If using melatonin, parents should also start with the lowest dose possible.

In addition, it’s important to keep electronics such as tablets or televisions out of children’s bedroom, as the blue light emitted by many of these screens interferes with the natural production of melatonin.

Offer comfort but enforce boundaries

Parents can help ease little ones’ anxiety by allowing extra time to let them talk about their day, which might draw out specific worries and give parents a chance to provide compassion and reassurance, Clark said.

Rather than remaining in the room, parents can also offer to check on the child every few minutes, which acknowledges the child’s fears and offers a reassuring presence, but still maintains a calm sleep environment and promotes sleep independence.

“Families can incorporate comforting rituals to help transform nighttime fears into a calming experience,” Clark said.

Have a consistent approach when children wake up in the night

Some children are prone to vivid dreams or nightmares and may have difficulty getting back to sleep. Parents should decide on their approach to this situation and stick with it, Clark says, whether it’s taking the child back to bed or allowing them to stay in the parents’ room.

“Being consistent in carrying out that approach will help the child adjust and be more likely to return to sleep,” Clark said.

Ease into changes in sleep patterns, such as dropping naps

For young children, a major sleep-related transition is discontinuing daytime naps. In general, children ages one to two should get 11-14 hours of sleep with naps while the amount of recommended sleep decreases slightly from ages three to six.

If children are taking longer to fall asleep at nap time, resisting naps or suddenly having difficulty falling asleep at night or waking up earlier than usual in the morning, it may be time to drop the nap, Clark says.

“Parents may need to adjust sleep routines gradually to transition to changes to a child’s sleep patterns,” Clark said.

Other changes that can affect a child’s sleep include transitioning from a crib to a toddler bed, starting school, having a change in their daytime routine, or being outdoors for longer than usual.

Vitamin B6: New compound delays degradation

Vitamin B6 is important for brain metabolism. Accordingly, in various mental illnesses, a low vitamin B6 level is associated with impaired memory and learning abilities, with a depressive mood, and even with genuine depression. In older people, too little vitamin B6 is linked to memory loss and dementia.

Although some of these observations were made decades ago, the exact role of vitamin B6 in mental illness is still largely unclear. What is clear, however, is that an increased intake of vitamin B6 alone, for example in the form of dietary supplements, is insufficient to prevent or treat disorders of brain function.

Publication in eLife

A research team from Würzburg University Medicine has now discovered another way to increase vitamin B6 levels in cells more effectively: namely by specifically inhibiting its intracellular degradation. Antje Gohla, Professor of Biochemical Pharmacology at the Department of Pharmacology and Toxicology at Julius-Maximilians-Universität Würzburg (JMU), is responsible for this.

Other participants come from the Rudolf Virchow Center for Integrative and Translational Bioimaging at JMU, the Leibniz-Forschungsinstitut für Molekulare Pharmakologie-FMP Berlin and the Institute for Clinical Neurobiology at Würzburg University Hospital. The team has now published the results of their investigations in the scientific journal eLife.

Enzyme Blockade Improves Learning Ability

“We were already able to show in earlier studies that genetically switching off the vitamin B6-degrading enzyme pyridoxal phosphatase in mice improves the animals’ spatial learning and memory capacity,” explains Antje Gohla. In order to investigate whether such effects can also be achieved by pharmacological agents, the scientists have now looked for substances that bind and inhibit pyridoxal phosphatase.

With success: “In our experiments, we identified a natural substance that can inhibit pyridoxal phosphatase and thus slow down the degradation of vitamin B6,” explains the pharmacologist. The working group was actually able to increase vitamin B6 levels in nerve cells that are involved in learning and memory processes. The name of this natural substance: 7,8-Dihydroxyflavone.

New Approach for Drug Therapy

7,8-Dihydroxyflavone has already been described in numerous other scientific papers as a molecule that can improve learning and memory processes in disease models for mental disorders. The new knowledge of its effect as an inhibitor of pyridoxal phosphatase now opens up new explanations for the effectiveness of this substance. This could improve the mechanistic understanding of mental disorders and represent a new drug approach for the treatment of brain disorders, the scientists write in their study.

The team also considers it a great success that 7,8-Dihydroxyflavone has been identified as an inhibitor of pyridoxal phosphatase for the first time — after all, this class of enzymes is considered to be particularly challenging for drug development.

A Long Way to a Drug

When will people benefit from this discovery? “It’s too early to say,” explains Marian Brenner, a first author of the study. However, there is much to suggest that it could be beneficial to use vitamin B6 in combination with inhibitors of pyridoxal phosphatase for various mental disorders and neurodegenerative diseases.

In a next step, Gohla and her team now want to develop improved substances that inhibit this enzyme precisely and highly effectively. Such inhibitors could then be used to specifically test whether increasing cellular vitamin B6 levels is helpful in mental or neurodegenerative diseases.